YES 2.178
H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:
↳ HASKELL
↳ LR
mainModule Main
|
| ((significand :: Float -> Float) :: Float -> Float) |
module Main where
Lambda Reductions:
The following Lambda expression
\(m,_)→m
is transformed to
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
mainModule Main
|
| ((significand :: Float -> Float) :: Float -> Float) |
module Main where
Replaced joker patterns by fresh variables and removed binding patterns.
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
mainModule Main
|
| ((significand :: Float -> Float) :: Float -> Float) |
module Main where
Cond Reductions:
The following Function with conditions
| power | vw 0 | = 1.0 |
| power | x vx@(y+1) | = fromInt x * power x y |
| power | x y | = 1.0 / power x (`negate` y) |
is transformed to
| power | vw xw | = power4 vw xw |
| power | x vx | = power2 x vx |
| power | x y | = power0 x y |
| power0 | x y | = 1.0 / power x (`negate` y) |
| power1 | True x vx | = fromInt x * power x (vx - 1) |
| power1 | wx wy wz | = power0 wy wz |
| power2 | x vx | = power1 (vx >= 1) x vx |
| power2 | xu xv | = power0 xu xv |
| power3 | True vw xw | = 1.0 |
| power3 | xx xy xz | = power2 xy xz |
| power4 | vw xw | = power3 (xw == 0) vw xw |
| power4 | yu yv | = power2 yu yv |
The following Function with conditions
is transformed to
| undefined0 | True | = undefined |
| undefined1 | | = undefined0 False |
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
mainModule Main
|
| ((significand :: Float -> Float) :: Float -> Float) |
module Main where
Let/Where Reductions:
The bindings of the following Let/Where expression
| encodeFloat m (`negate` floatDigits x) |
| where | |
| |
| |
are unpacked to the following functions on top level
| significandM0 | yw (m,vv) | = m |
| significandM | yw | = significandM0 yw (significandVu11 yw) |
| significandVu11 | yw | = decodeFloat yw |
The bindings of the following Let/Where expression
| fromInteger x * power 2 y |
| where |
| power | vw xw | = power4 vw xw |
| power | x vx | = power2 x vx |
| power | x y | = power0 x y |
|
|
| power0 | x y | = 1.0 / power x (`negate` y) |
|
|
| power1 | True x vx | = fromInt x * power x (vx - 1) |
| power1 | wx wy wz | = power0 wy wz |
|
|
| power2 | x vx | = power1 (vx >= 1) x vx |
| power2 | xu xv | = power0 xu xv |
|
|
| power3 | True vw xw | = 1.0 |
| power3 | xx xy xz | = power2 xy xz |
|
|
| power4 | vw xw | = power3 (xw == 0) vw xw |
| power4 | yu yv | = power2 yu yv |
|
are unpacked to the following functions on top level
| primFloatEncodePower4 | vw xw | = primFloatEncodePower3 (xw == 0) vw xw |
| primFloatEncodePower4 | yu yv | = primFloatEncodePower2 yu yv |
| primFloatEncodePower1 | True x vx | = fromInt x * primFloatEncodePower x (vx - 1) |
| primFloatEncodePower1 | wx wy wz | = primFloatEncodePower0 wy wz |
| primFloatEncodePower3 | True vw xw | = 1.0 |
| primFloatEncodePower3 | xx xy xz | = primFloatEncodePower2 xy xz |
| primFloatEncodePower | vw xw | = primFloatEncodePower4 vw xw |
| primFloatEncodePower | x vx | = primFloatEncodePower2 x vx |
| primFloatEncodePower | x y | = primFloatEncodePower0 x y |
| primFloatEncodePower2 | x vx | = primFloatEncodePower1 (vx >= 1) x vx |
| primFloatEncodePower2 | xu xv | = primFloatEncodePower0 xu xv |
| primFloatEncodePower0 | x y | = 1.0 / primFloatEncodePower x (`negate` y) |
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
mainModule Main
|
| ((significand :: Float -> Float) :: Float -> Float) |
module Main where
Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
mainModule Main
|
| (significand :: Float -> Float) |
module Main where
Haskell To QDPs
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
new_primPlusNat(Succ(yx2800), Succ(yx271000)) → new_primPlusNat(yx2800, yx271000)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_primPlusNat(Succ(yx2800), Succ(yx271000)) → new_primPlusNat(yx2800, yx271000)
The graph contains the following edges 1 > 1, 2 > 2
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
new_primMulNat(Succ(yx26000), yx27100) → new_primMulNat(yx26000, yx27100)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_primMulNat(Succ(yx26000), yx27100) → new_primMulNat(yx26000, yx27100)
The graph contains the following edges 1 > 1, 2 >= 2
↳ HASKELL
↳ LR
↳ HASKELL
↳ BR
↳ HASKELL
↳ COR
↳ HASKELL
↳ LetRed
↳ HASKELL
↳ NumRed
↳ HASKELL
↳ Narrow
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
new_primFloatEncodePower3(Succ(yx70)) → new_primFloatEncodePower3(yx70)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_primFloatEncodePower3(Succ(yx70)) → new_primFloatEncodePower3(yx70)
The graph contains the following edges 1 > 1